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Abstract—With the rapid development of biomedicine, the number of biomedical articles has increased accordingly, which presents a

great challenge for biologists trying to keep up with the latest research. Information retrieval seeks to meet this challenge by searching

among a large number of articles based on given queries and providing the most relevant ones to fulfill information needs. As an

effective information retrieval technique, query expansion has some room for improvement to achieve the desired performance when

directly applied for biomedical information retrieval because there exist many domain-related terms both in users’ queries and in related

articles. To solve this problem, we propose a biomedical query expansion framework based on learning-to-rank methods, in which we

refine candidate expansion terms by training term-ranking models to select the most relevant terms. To train the term-ranking models,

we first propose a pseudo-relevance feedback method based on MeSH to select candidate expansion terms and then represent the

candidate terms as feature vectors by defining both the corpus-based term features and the resource-based term features.

Experimental results obtained for TREC genomics datasets show that our method can capture more relevant terms to expand the

original query and effectively improve biomedical information retrieval performance.

Index Terms—Biomedical information retrieval, learning-to-rank, query expansion, term-ranking model

Ç

1 INTRODUCTION

IN recent years, the rapid development of biomedicine
has led to the treatment of intractable diseases and pro-

moted the development of scientific research related to
humans. At the same time, however, the explosive growth
of information in biomedical articles poses a great chal-
lenge for biologists in obtaining all the articles related to
one topic and thereby grasping the progress of research in
their fields. Biomedical information retrieval is thus a hot
research topic at the intersection of biomedicine and infor-
mation retrieval (IR).

Given a query, biomedical information retrieval systems
are designed to provide all relevant articles in a ranking list,
in which articles are sorted based on their relevance to the
query. The relevance can be determined using different
retrieval models based on either the occurrences of query
terms in the articles or probabilistic measures such as those
used in language models. However, it is difficult to obtain
optimal retrieval performance when directly applying these
retrieval models to biomedical information retrieval. One
possible reason for this problem lies in the incomplete inter-
pretation of the information need of the user; that is, queries
submitted by the user may partially express what he or she

needs, thus resulting in failed retrieval. For example, given
the biomedical query “How does P53 affect apoptosis?”, the
goal of the query is to find relevant documents focusing on
the function of the protein P53 for apoptosis, and multiple
aspects of the query should be covered in the search results
such as apoptosis regulatory proteins, tumor suppressor
protein P53 and gene expression, which can be used to
enrich the query and better interpret the information need.
Moreover, biomedical IR faces domain-specific challenges
mainly caused by the abundant biomedical terms including
synonyms and polysemy. Query expansion methods, as a
series of classic and effective methods used in IR tasks [1],
[2], [3], [4], can tackle the problem by enriching the original
query with relevant terms and interpreting information
needs to obtain more relevant articles.

Query expansion methods seek to reformulate the origi-
nal query by adding relevant terms to better describe the
information need, thus enhancing retrieval performance.
These methods can be divided into two categories: corpus-
based query expansion and resource-based query expan-
sion. Corpus-based query expansion methods, such as the
pseudo-relevance feedback (PRF) method, obtain expansion
terms from the top-ranked documents in an initial retrieval
with the assumption that the most frequent terms appearing
in these documents are strongly correlated with the original
query and can help improve the query. Resource-based
query expansion methods employ external resources, such
as domain-specific dictionaries, to measure the effectiveness
of expansion terms. In biomedicine, there are many seman-
tic resources, which contain many domain-specific terms
and can be used to measure the importance of expansion
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terms. Therefore, there is potential to improve the perfor-
mance of biomedical IR by combining corpus-based query
expansion and resource-based query expansion to find
high-quality expansion terms.

Based on this idea, we propose a novel query expansion
framework based on different learning-to-rank methods for
biomedical information retrieval. Within this framework, we
modify the pseudo-relevance feedback method to extract
candidate expansion terms based on Medical Subject Head-
ings (MeSH). To evaluate the usefulness of the candidate
terms, we introduce learning-to-rank methods to perform
supervised training of term-ranking models by defining
both the corpus-based term features and the resource-based
term features. The learned models are used to refine the
expansion terms and assign weights to the selected expan-
sion terms. Based on the selected terms, we reformulate the
original query and retrieve with the expanded query to
obtain better results. Experimental results obtained using
TREC Genomics datasets show that our framework is effec-
tive in improving the performance of biomedical IR. We list
the contributions of the paper as follows.

a) We combine MeSH-based term information with
corpus-based term information to modify the
pseudo-relevance feedback method and thereby find
a large set of candidate expansion terms.

b) We define the corpus-based term features and the
resource-based term features and introduce different
learning-to-rank methods to refine the candidate
terms by training term-ranking models.

c) We conduct extensive experiments to examine the
effectiveness of our framework based on different
learning-to-rank methods in comparison with differ-
ent baseline models.

The remainder of the paper is organized as follows. In
Section 2, we provide a review of related work. In Section 3,
we introduce our query expansion framework in detail. In
Section 4, we conduct extensive experiments to examine the
effectiveness of the proposed method. In Section 5, we con-
clude the paper and provide suggestions for future work.

2 RELATED WORK

In this section, we provide an overview of three areas of
related work: research on query expansion, research on
learning-to-rank, and research on query expansion for bio-
medical information retrieval.

2.1 Query Expansion

In information retrieval, query expansion is an effective and
classic way to enrich users’ queries with query-related terms,
which can be integrated into different retrieval models, such
as vector space [1], relevance [2], probabilistic [3], and mix-
ture models [4]. Because the expansion terms help to better
describe the information need, integrated models involving
query expansion can improve retrieval performance.

Moreover, it has been observed that the quality of expan-
sion terms can largely affect the effectiveness of query expan-
sion. Therefore, some studies have attempted to refine the
expansion terms using different methods. For example, Lee
et al. [5] employed abundant linguistic and statistical term
features to discover the underlying associations among

expansion terms. Cao et al. [6] proposed classifying the can-
didate expansion terms to obtain high-query terms for
expansion and demonstrated that informative term features
can help choose good expansion terms in a supervised way.
Based on these studies, ranking methods, particularly
learning-to-rank methods, have been introduced for select-
ing high-quality expansion terms [7], which have demon-
strated that ranking expansion terms according to their
relevance to the original query can help refine the expansion
terms and improve retrieval performance. In this paper, we
attempt to modify the ranking-based query expansion
method for biomedical information retrieval by taking
domain-specific knowledge into consideration. Next, we
briefly introduce learning-to-rank methods, which are the
key technologies in our query expansion framework.

2.2 Learning-to-Rank

Learning-to-rank methods have been proposed and studied
in recent years [8], [9], [10], [11], [12], [13]; these methods
adopt supervised machine learning techniques to solve the
ranking problem in IR tasks [14], [15]. Specifically, learning-
to-rankmethodsmodify the loss function of traditional super-
vised machine learning methods by incorporating ranking-
based information and reduce the ranking loss iteratively in
model training to construct the outputted ranking model.
According to different forms of loss functions, learning-to-
rank methods can be categorized into three approaches,
namely, the pointwise approach, the pairwise approach and
the listwise approach, which model the ranking loss for a sin-
gle document, a pair of documents and a list of documents,
respectively.

Because ranking is a central problem to be solved in many
tasks, learning-to-rank methods have been introduced to
achieve good performance in different tasks, such as commu-
nity question answering [16] and recommendation system
[17]. In our previous work [18], we proposed to optimize the
pseudo-relevance feedbackmethod, a classic query expansion
method, using learning-to-rank methods to refine the set of
expansion terms. In this paper, we further modify the frame-
work to adapt it to biomedical information retrieval. Overall,
there are two main differences between our previous work
and this paper. First, we propose a novel MeSH-based
pseudo-relevance feedback method by combining MeSH-
based term information and co-occurrence-based term infor-
mation. Second, we utilize domain-specific resources to
extract effective term features for training the term-ranking
models. In addition, we evaluate the modified query expan-
sion framework on public available datasets through exten-
sive experiments and demonstrate the effectiveness of the
modified framework for biomedical information retrieval.

2.3 Query Expansion for Biomedical Information
Retrieval

In biomedical information retrieval tasks, query expansion
methods have been widely used to improve retrieval perfor-
mance. As an initial attempt, Srinivasan [19] evaluated the
retrieval effectiveness of query expansion strategies on aMED-
LINE test collection using the SMART retrieval system. More
recently, Xu et al. [20] compared local analysis, global analysis
and ontology-based query expansion strategies for biomedical
literature searches using TREC datasets. ‘Matos et al. [21]
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developed a new PubMed-based document retrieval and pri-
oritization tool with a concept-oriented query expansion to
find documents containing related concepts. Rivas et al. [22]
studied query expansion techniques for biomedical informa-
tion retrieval, including the retrieval of query-specific terms,
corpus-specific terms and language-specific terms. These
methods show that query expansion methods are useful for
biomedical IR tasks and can be further enhanced with respect
to certain domain-specific characteristics.

Furthermore, other studies have focused on latent con-
cept expansion not only in the general IR field [23], [24] but
also in the medical and clinical IR field [25], [26], [27], [28],
[29]. In these studies, it has been proved that modeling
latent query concepts has a significantly positive effect on
retrieval performance. In the general IR field, Bendersky
et al. [24] proposed assigning weights to concepts by apply-
ing the weighted dependence model to TREC corpora and
web corpora, achieving better retrieval effectiveness. In
TREC 2011&2012 medical records tracks, concept-based
retrieval was also addressed to solve domain-specific tasks
[25], [26]. In the clinical IR field, Zhu et al. [28] identified
patient cohorts using mixtures of relevance models to
weight query expansion terms. Wu et al. [29] proposed rep-
resenting clinical queries as medically defined concepts for
expansion and achieved modest improvements.

In addition, some studies have attempted to employ
domain-specific resources, particularly the MeSH thesaurus,
in query expansion processes to enhance retrieval perfor-
mance. Drame et al. [30] proposed exploiting external
resources to improve the performance of the vector space
model in task 3 of the ShARe/CLEF eHealth Evaluation Lab
2014, where the MeSH thesaurus was used for query expan-
sion with different configurations. Oh et al. [31] utilized
external collections to optimize the PRF approach, incorpo-
rating the structure of external collections into their final
feedbackmodel. Mao et al. [32] integrated aMeSH-enhanced
concept layer into a language modeling framework to make
the most of concept associations. Jalali et al. [33] proposed a
semantic query expansion method to match concept pairs
between queries and the corresponding documents. Most
studies have sought to optimize query expansion by captur-
ing semantic information in biomedical resources directly.
However, few studies have attempted to combine multiple
term information for query expansion.

Learning-to-rank methods can integrate multiple term
information by supervised learning and have been shown to
be effective inmany tasks.Wehave previously addressed bio-
medical information retrieval by modifying learning-to-rank
methods for diversity-oriented passage retrieval [34]. In this
paper, we explore the possibility of learning to rank a set of
expansion terms for biomedical query expansion by extract-
ing both corpus-based and resource-based term features.

3 METHODS

In this section, we illustrate the general framework of our
query expansion framework and provide detailed explana-
tions of the proposed method, including the basic retrieval
model, the method for choosing the candidate expansion
terms, how the terms are represented as feature vectors for
training the ranking models and the learning-to-rank meth-
ods for training the term-ranking models.

3.1 General Framework

In this section, we introduce the general query expansion
framework for biomedical information retrieval. Overall, the
framework seeks to obtain a large set of candidate expansion
terms from the top-ranked documents, namely, the feedback
documents. We then utilize learning-to-rank methods to fur-
ther refine the expansion terms and expand the query with
the selected terms. Finally, we retrieve information with the
expanded query to complete the retrieval process. We illus-
trate the process flow of our framework in Fig. 1.

The figure shows that we first conduct initial retrieval to
obtain a large set of candidate expansion terms from the top-
ranked documents, which are assumed to be relevant to the
original query. Next, we represent these candidate terms as
feature vectors including corpus-based features and resource-
based features and assign each term a ground truth label
according to its latent effect on retrieval performance. To train
the term-ranking models, we conduct supervised training
based on learning-to-rank methods with the term vectors and
the ground truth labels as the training data. Finally, we use
the model to refine the expansion terms for query expansion
and retrievewith the expanded query.

3.2 Candidate Expansion Term Extraction

In this section, we introduce our method for choosing a
large set of candidate expansion terms, which will be used
later for term refinement of query expansion. Candidate
expansion terms are extracted in two steps: First, initial
retrieval is conducted to obtain feedback documents, which
is mainly based on traditional language model of informa-
tion retrieval; second, candidate terms are extracted based
on the feedback documents, and we propose a novel
method that considers both the feedback documents and
Medical Subject Headings (MeSH) for measuring the rele-
vance of terms.

3.2.1 Feedback Documents

To obtain the feedback documents, we conduct the initial
retrieval with the original query based on the traditional
language model of information retrieval using Dirichlet
smoothing implemented in Indri [35], [36]. The language
model is based on a probabilistic model for scoring docu-
ments with respect to one query and ranking the documents
based on their relevance. After conducting the initial
retrieval, we choose the top-ranked documents as the source
of candidate expansion terms based on the pseudo-rele-
vance feedback method. PRF assumes that these documents,
namely, the feedback documents, are relevant to the original
query, and the terms in these documents are closely

Fig. 1. Overall process flow of our query expansion framework.
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correlated to the original query, which can be used to enrich
the query for interpreting the information needs.

3.2.2 Co-Occurrence-Based Candidate Term Selection

We first introduce a co-occurrence-basedmethod [7] to select
the candidate expansion terms from the feedback docu-
ments. Because high co-occurrence frequency indicates that
two terms are strongly correlated, we take the co-occurrences
of the candidate terms and the query terms as an indicator of
term relevance. Namely, when one candidate term appears
frequently with one query term in the feedback documents,
we consider the term useful for enriching the query. We for-
mulate this method as follows.

TFIDFDOCðt; QÞ ¼
X
q2Q

idfDOCðqÞ � idfDOCðtÞ � log ðtfDOCðt; qÞ þ 1:0Þ;

(1)

where t represents one of the terms in the feedback docu-
ments and q represents one of the query terms in a given
query Q:tfDOCðt; qÞ is the co-occurrence term frequency of
the term t and the term q, and idfDOCðtÞ is the inverse docu-
ment frequency of the term t. These two items can be com-
puted using the following equations.

tfDOCðt; qÞ ¼
P

d2D log ðfreqðt; dÞ þ 1:0Þ � log ðfreqðq; dÞ þ 1:0Þ
log jDj ;

(2)

where d represents one of the feedback documents D and
freqðt; dÞ is the raw term frequency of the term t in the docu-
ment d. Similarly, freqðq; dÞ is the raw term frequency of the
query term q in the document d. jDj is the total number of
feedback documents.

Lin et al. [7] used social annotations to compute inverse
document frequency. Because term occurrences in social
annotations are sparser than those in the feedback docu-
ments we used, we adopt a widely used method [15] for
computing idf in our method, which subtracts nðtÞ from the
numerator as follows.

idfDOCðtÞ ¼ log
N � nðtÞ þ 1:0

nðtÞ þ 1:0
; (3)

where N is the number of documents in the whole collec-
tion, and nðtÞ is the number of documents containing the
term t in the collection. idfDOCðtÞ measures the term impor-
tance in terms of its occurrences in the collection. To accu-
mulate all the tfDOCðt; qÞ and idfDOCðtÞ with respect to the
term t, we obtain the co-occurrence scores of t for the whole
query in Eq. (1).

3.2.3 MeSH-Based Candidate Term Selection

In biomedicine, there are many semantic resources contain-
ing abundant domain-specific terms, which can potentially
contribute to the query expansion process to choose more
useful and relevant expansion terms. Controlled vocabular-
ies, such as MeSH, have been proved effective in many bio-
medical information retrieval tasks. Therefore, we attempt
to encode the MeSH-based information of terms into the co-
occurrence method by considering term distribution in
MeSH, which is similar to the method using term frequency
and inverse document frequency. Specifically, we define the

term frequency as the occurrences of terms in MeSH, and
the inverse document frequency as the number of unique
concepts containing the term in MeSH, because if a certain
term appears in fewer concepts, the term possibly conveys
more information than that appearing in more concepts. We
formulate this approach as follows.

tfMeSHðtÞ ¼ log ðfreqðt;MeSHÞ þ 1:0Þ
log jT j ; (4)

where jTj is the total number of terms in the MeSH thesau-
rus, and freqðt;MeSHÞ is the raw frequency of the term t in
MeSH.

idfMeSHðtÞ ¼ M �mðtÞ þ 1:0

mðtÞ þ 1:0
; (5)

where M is the total number of concepts in the MeSH the-
saurus, and mðtÞ is the number of unique concepts contain-
ing the term t:idfMeSHðtÞ can measure the importance of the
term t in MeSH. Similarly to the computation in Eq. (3), we
compute idfMeSHðtÞ based on the method defined in [15].
Finally, we combine tfMeSHðtÞ and idfMeSHðtÞ as follows:

TFIDFMeSHðtÞ ¼ idfMeSHðtÞ � log ðtfMeSHðtÞ þ 1:0Þ: (6)

Overall, we choose the candidate expansion terms via the
co-occurrence-based method [7] and the MeSH thesaurus.
We combine the two items from Eqs. (1) and (6) with a lin-
ear interpolation as follows:

scoreðtjQÞ ¼ � � TFIDFDOCðt; QÞP
t TFIDFDOCðt; QÞ þ ð1� �Þ � TFIDFMeSHðtÞP

t TFIDFMeSHðtÞ ;

(7)

where � is the interpolation parameter within the range of 0
and 1. We score all the terms in the feedback documents,
rank the terms based on their scores from high to low, and
choose the top-ranked terms as the candidate expansion
terms for further refinement.

3.3 Term Feature Extraction

In this section, we represent candidate expansion terms as
feature vectors. In a term feature vector, each dimension rep-
resents a term featuremodeling the term in a uniquemanner,
and the entire vector encodes the comprehensive informa-
tion about the term, which can be useful for choosing the
expansion terms. We divide the features into two categories:
corpus-based features and resource-based features.

3.3.1 Corpus-Based Features

The corpus-based features are mainly based on the occur-
rences of terms in the corpus, which can be extracted based
on different characteristics, such as term co-occurrence and
term proximity. Moreover, the corpus-based features can be
extracted from either the whole collection or the set of feed-
back documents. We provide detailed definitions of these
features in the following sections.

Co-Occurrence-Based Term Features. The co-occurrence of
terms refers to the frequency with which two terms appear
in the same context, which can be an effective measurement
of the similarity of two terms. Therefore, to measure the rel-
evance between a given query and its corresponding expan-
sion terms, we first accumulate the co-occurrences of a
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query term and a candidate expansion term as a term fea-
ture as follows:

feature1ðt; QÞ ¼
X
q2Q

X
d2D

cooccurrenceðq; t; dÞ; (8)

where Q is the original query and q is a query term inQ:D is
the document collection and d is one document in D. In this
feature, we count all the co-occurrences of term t with each
query term q in all the documents in the entire corpus. Fur-
thermore, we count the co-occurrences of one term with a
pair of query terms as a stronger indicator of co-occurrence
as follows:

feature2ðt; QÞ ¼
X

ðq1;q2Þ2Q

X
d2D

cooccurrenceðq1; q2; t; dÞ; (9)

where ðq1; q2Þ can be any pair of query terms in the query.
Proximity-Based Term Features. Term proximity is a more

focused measurement of term co-occurrence that counts the
co-occurrence of two terms within a smaller distance, called
the window size, instead of the whole document [37].
Therefore, proximity may be a more effective feature for
measuring the relevance of candidate terms. We define
term features based on proximity as follows:

feature3ðt; QÞ ¼
X
q2Q

X
d2D

X
w�d

cooccurrenceðq; t; wÞ; (10)

where w is the window size for measuring term proximities.
We empirically set the window size from 1 to 10 words in
our experiments.

Feedback Documents-Based Term Features. We also extract
term features based on the feedback documents, namely,
the top-ranked documents from the initial retrieval, because
these documents are more likely to be relevant to the given
query according to the basic assumption of pseudo-
relevance feedback. These features may be of great use in
characterizing the terms. Term features based on feedback
documents can be categorized into two classes: features
based on term frequency and inverse document frequency,
which are classic statistics in information retrieval field, fea-
tures based on co-occurrence and term proximity, where co-
occurrences are measured in the set of feedback documents
instead of the whole corpus.

3.3.2 Resource-Based Features

Because there are many semantic resources covering com-
plex relationships of terms in the domain of biomedicine, we
also seek to extract term features using these resources to
model terms comprehensively, whichmay be useful for eval-
uating the importance of domain-specific candidate terms.

MetaMap-Based Features. We first attempt to extract term
features based on the characteristics of biomedical concepts
associated with the expanded query. Inspired by [38], we
recognize the associated concepts using MetaMap [39], a
biomedical natural language processing tool developed by
the National Library of Medicine (NLM). MetaMap can dis-
cover concepts from a piece of biomedical text in the Unified
Medical Language System (UMLS) metathesaurus. Specifi-
cally, we combine one candidate expansion term with the
original query to form an expanded query and then convert
the expanded query from a text query to a concept query,

which contains the canonical forms of Concept Unique
Identifiers (CUIs). Intuitively, if the concept query contains
more biomedical concepts, it is more likely to convey useful
information about the term, and the term may be more use-
ful for expansion. We define three features based on this
idea, as indicated in Eqs. (11), (12), and (13).

feature4ðt; QÞ ¼ countðt; Q0Þ: (11)

Eq. (11) counts the number of times that the term t
appears in the concept query Q0 of the expanded query with
the term t and the original query Q.

feature5ðt; QÞ ¼ countCUIðt; Q0Þ: (12)

Eq. (12) counts the total number of concepts for the con-
cept query Q0 of the expanded query, which can be a mea-
surement of term importance at the query level.

Because the MetaMap program can return 1 to 10 candi-
dates for each concept contained in a concept query, the
number of returned candidates indicates the specific degree
of the concept, which can reflect the importance of the term.
We define a term feature based on this idea as follows:

feature6ðt; QÞ ¼
P

c2Q0 jRðcÞj
countCUIðt; Q0Þ ; (13)

where jRðcÞj is the number of returned candidates for con-
cept c of the concept query Q0 of the expanded query with
the original query Q and the term t. We normalize the fea-
ture values by the number of concepts contained in the con-
cept query to make the feature values more comparable.

MeSH-Based Features. We also define term features based
on their distribution in the MeSH thesaurus, including the
number of occurrences of the term, the number of unique con-
cepts containing the term, and the combination of these two
factors. We have defined these features in the previous sec-
tion, i.e., in Eqs. (5), (6) and (7) as tfMeSHðtÞ, idfMeSHðtÞ and
TFIDFMeSHðtÞ, respectively. Because a given statistic will be
more reliable after normalization, we normalize all feature
values to the interval [0-1]. After representing the candidate
expansion terms as feature vectors, we take these feature vec-
tors as inputs, and the term labels as learning targets for learn-
ing-to-rank methods to construct term-ranking models in a
supervisedway.

3.4 Term-Labeling Strategy

After representing each candidate expansion term as a fea-
ture vector, we take the feature vectors as inputs for training
the term-ranking model. Before training, we assign each
term a ground truth label as the learning target. We take
two factors into consideration when labeling a term: the
term’s impact on retrieval performance compared with the
retrieval performance of the original query and the increas-
ing magnitude of the performance. The labeling strategy is
based on the following equation.

labelterm ¼
2 evalðqueryþ termÞ > evalðqueryÞ and rankðtermÞ � k

1 evalðqueryþ termÞ > evalðqueryÞ or rankðtermÞ � k

0 evalðqueryþ termÞ � evalðqueryÞ;

8><
>:

(14)
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where eval can be any evaluation measures in information
retrieval. Before assigning each candidate term a relevance
label, we first retrieve using an expanded query with one
term and the original query (denoted as queryþterm in
Eq. (14)) and measure the difference in retrieval perfor-
mance relative to the retrieval performance achieved with
only the original query (denoted as query in Eq. (14)). We
then sort the candidate terms based on their effects on the
performance, and rank(term) indicates the rank of term in the
sorted list. Namely, if the rank of a term is 1, the term con-
tributes the most to the improved performance. Based on
this idea, we label each term according to Eq. (14), where
the label 2 means the term is definitely relevant to the origi-
nal query, the label 1 means the term is possibly relevant to
the query, and the label 0 means the term is irrelevant to the
query. In our experiment, we choose the document mean
average precision (Document MAP) as the eval function and
tune the parameter k based on the retrieval performance of
the original pseudo-relevance feedback method.

3.5 Learning-to-Rank Methods for Biomedical
Query Expansion

To refine the expansion terms, we introduce learning-to-
rank methods for term refinement by constructing term-
ranking models. The training data for learning-to-rank are
the defined feature vectors of the candidate expansion
terms, with the ground truth labels of the candidate term as
the learning targets. Learning-to-rank methods utilize
machine learning techniques to solve ranking problems,
which have been demonstrated to be effective in many IR
tasks. The essence of learning-to-rank lies in incorporating
ranking information into the loss function of supervised
machine learning. The loss function for term ranking using
learning-to-rank can be formalized as follows:

RankingLossðQ; T Þ ¼
X
q2Q

X
i�tðqÞ

lossðiÞ; (15)

where Q is the query set, T is the overall candidate term set,
and tðqÞ is the candidate term set with respect to the query
q. Eq. (15) indicates that the ranking loss is accumulated
over all the queries in the training set.

For any query q, the ranking loss is counted by drawing
different types of samples from the query and its correspond-
ing terms. Samples can be categorized into three types: point-
wise, pairwise and listwise, which take one document, a pair

of documents and a list of documents into consideration
when computing the ranking loss, respectively. A specific
lossðiÞ for a sample i is determined by the machine learning
algorithms used. For example, for neural network-based
learning-to-rank methods, lossðiÞ is defined based on nonlin-
ear combinations of different features. The final term-ranking
model can be obtained by iteratively reducing the ranking
loss using optimizationmethods, such as gradient descent.

To help understand the training process, we illustrate the
learning-to-rank framework for query expansion in Fig. 2.
The training set consists of queries, and each query corre-
sponds to a set of candidate expansion terms with relevance
labels. Learning-to-rank methods take the training set as
inputs to learn the ranking model by iteratively reducing
the ranking loss between the predicted relevance and the
target relevance. In the testing phase, the learned model can
be used to predict the relevance of the candidate terms for a
testing query, ultimately choosing the expansion terms for
query expansion.

In this paper, we use learning-to-rank methods for term
refinement with the defined term features and use the con-
structed term-ranking models to choose the most relevant
terms for the original query for expansion.

4 EXPERIMENTS AND ANALYSIS

In this section, we conduct extensive experiments to examine
the effectiveness of the proposed query expansion frame-
work. We first introduce the experimental settings and the
baseline models. Then, we evaluate the performance of the
framework in terms of different feature sets and term-ranking
accuracies.Next,we compare the retrieval performance of dif-
ferent ranking models, investigate the usefulness of term
weighting, and compare the results of our method with the
official results obtained for TREC Genomics tracks. Finally,
we provide a comprehensive analysis of the experimental
results and discuss our findings.

4.1 Experimental Setting

We examine our query expansion framework based on the
datasets from TREC Genomics 2006 & 2007 tracks, which
are publicly available datasets containing 162,259 articles
from 49 genomics-related journals [40], [41]. The datasets
contain 62 queries, among which 26 are from the 2006 track
(we remove two queries with no relevant documents in
advance) and 36 from the 2007 track.

We use the Indri search engine [36] as the basic retrieval
system. We obtain N feedback documents from the initial
retrieval and stem the terms in the documents with stop-
words removed in advance. Based on the proposed method,
we obtain candidate expansion terms for term refinement, k
terms of which will be chosen in the final expanded query
for second retrieval. The expanded query can be repre-
sented in the Indri query language as follows:

#weightðaQoriginalð1:0� aÞ#combine

ð#weightðw1term1w2term2:::wktermkÞÞÞ:
(16)

Eq. (16) corresponds to the expanded query with
weighted expansion terms, where a is the weight on the
original query, and the whole set of expansion terms is

Fig. 2. Learning-to-rank framework for query expansion.
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weighted by (1.0- a). Each term in the expanded query is
weighted using the ranking score obtained from the con-
structed term-ranking model. Because the ranking scores
vary greatly among different ranking models, we normalize
them to the range of 0 to 1.

#weightðaQoriginalð1:0� aÞ
#combineðterm1term2 . . . termkÞÞ:

(17)

Eq. (17) corresponds to the expanded query with
unweighted expansion terms. We compare these two cases
to examine the effect of term weighting on retrieval perfor-
mance in the following section.

To obtain the average performance with learning-to-rank
methods, we perform five-fold cross validations to train the
term-ranking models. Specifically, we divide the queries
from each dataset into a training set, a validation set and a
test set in a ratio of 3:1:1, which follows the standard parti-
tion for the learning-to-rank datasets in LETOR [15]. We use
the training set to train ranking models, the validation set to
select the parameters for different ranking models, and the
test set to predict new queries. We report the experimental
results based on the average performance on all folds. We
tune the parameters N; k; � and a of the whole pseudo-
relevance feedback for the 2007 queries with the 2006
queries and tune the parameters for the 2006 queries with
the 2007 queries.

Because the TREC Genomics tracks design four evalua-
tion measures to measure performance, we use these same
measures in our experiments, namely, Document MAP,
AspectMAP, PassageMAP and Passage2MAP. Thesemeas-
ures modify the classic Mean Average Precision (MAP) to
evaluate the retrieval performance from different perspec-
tives for the biomedical information retrieval tasks [40], [41].

In the following sections, we first examine the effective-
ness of the proposed method for candidate term selection,
and thenwe train learning-to-rank based term-rankingmod-
els. Thereafter, we examine the performance of the term-
ranking models in terms of ranking accuracy and retrieval
performance. We also compare the term-ranking models
based on the effect of term weighting on retrieval perfor-
mance, and provide in-depth analysis and discussions.

4.2 Retrieval Performance of Baseline Models

In this section, we seek to examine the performance of the
proposed pseudo-relevance feedback method for candidate
term selection, which combines term information in the
feedback documents and the MeSH thesaurus. The retrieval

performance for the 2006 and 2007 queries are presented in
Tables 1 and 2, respectively, compared with the perfor-
mance measured for the baseline models.

The models compared in the tables include the query-
likelihood language model (QL) [4] implemented in the Indri
search engine and Lavrenko’s relevance model (RM) [2],
which expands the queries with the top-kmost relevant terms
obtained from N feedback documents. The third is the term
dependency model [7], which is an effective modified
pseudo-relevance feedback model that selects expansion
terms by considering both the full independence and sequen-
tial dependence of the expansion term and the original query.
The fourth is the cluster-based model [31], which uses
k-means to choose expansion terms for medical information
retrieval. For the proposed methods, the MeSH-based model
refers to the proposed pseudo-relevance feedback model
when scoring terms based solely on term distribution in
MeSH. We compare the retrieval performances of our PRF
methods in two situations, namely, when weighting the
expansion terms with the PRF-based scores and when the
terms shown in the tables are unweighted. We conduct two-
tailed paired Student t-tests (p < 0:05) to examine whether
the improvements are significant relative to the baselinemod-
els, where an asterisk indicates significant improvements
over the term dependencymethod and a dagger indicates sig-
nificant improvements over the cluster-basedmodel.

Table 1 shows that the baseline models, including the rele-
vance model and the term dependency model, outperform
the basic retrieval with small improvements, and the retrieval
model based solely on theMeSH-basedPRF achieves a perfor-
mance level comparable to that of these models. Furthermore,
the proposed PRF method with unweighted expansion terms
achieves the best retrieval performance in terms of Document
MAP and Passage2 MAP, and the cluster-based model
achieves the best performance in terms of the other two evalu-
ationmeasures.

The results for 2007 queries in Table 2 show the same trend.
As shown in the table, all of the baseline models yield much
better results compared with those yielded by the basic lan-
guage model. The relevance model achieves the best perfor-
mance in terms of Passage MAP and Aspect MAP, and the
proposed PRF methods significantly outperform the other
methods with the weighted or the unweighted expansion
terms in terms of DocumentMAP and Passage2MAP.

The experimental results for both years’ queries indicate
that the proposed PRF method can improve retrieval perfor-
mance, which would be highly useful for further term refine-
ment. One possible explanation for this finding is that the

TABLE 1
Retrieval Performance of Baseline Models on the 2006 Queries

Retrieval Model Document Passage Aspect Passage2

Language Model 0.3178y 0.0205 0.1983� 0.0239
Relevance Model 0.3194y 0.0207 0.2023� 0.0240
Term Dependency 0.3198y 0.0208 0.1785 0.0254
Cluster-based Model 0.3089 0.0235� 0.2644� 0.0258�

MeSH-based Model 0.3176y 0.0204 0.1902� 0.0241
Proposed PRF-weighted 0.3237�y 0.0212� 0.2037� 0.0260�y
Proposed PRF-unweighted 0.3242�y 0.0212� 0.2040� 0.0260�y

‘�’ indicates significant improvements over the term dependency method, and
‘y’ indicates significant improvements over the cluster-based model.

TABLE 2
Retrieval Performance of Baseline Models on the 2007 Queries

Retrieval Model Document Passage Aspect Passage2

Language Model 0.2587 0.0646 0.2000� 0.0876
Relevance Model 0.2678y 0.0720�y 0.2302�y 0.0963y
Term Dependency 0.2804y 0.0683y 0.1974 0.0939y
Cluster-based Model 0.2651 0.0673 0.1987� 0.0905
MeSH 0.2634 0.0706�y 0.2263�y 0.0941�y
Proposed PRF-weighted 0.2810�y 0.0705� 0.1995� 0.0991�y
Proposed PRF-unweighted 0.2818�y 0.0706� 0.1996� 0.0992�y

‘�’ indicates significant improvements over the term dependency method, and
‘y’ indicates significant improvements over the cluster-based model.

960 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 16, NO. 3, MAY/JUNE 2019



MeSH-based term information can enhance the co-occurrence-
based retrieval model by incorporating the term distributions
in the MeSH thesaurus, which helps measure the term impor-
tance for query expansion, particularly for choosing candidate
domain-specific terms. Furthermore, we find that the term
weights obtained from the proposed method are of little use
for improving the performance, and even hurt the perfor-
mance, which inspires us to develop a more effective method
for termweighting for expanded queries.

4.3 Evaluations on Term-Ranking Accuracy

In our query expansion framework, we utilize the proposed
MeSH-based PRF method to choose a large set of candidate
expansion terms and represent each term as a feature vector
based on the labeling strategy and the pre-defined term fea-
tures. We take the feature vectors of terms in the training set
as the inputs for learning-to-rank methods to train the term-
ranking models; the models can thus be used to predict the
term ranking for the queries in the testing set.

To choose more useful expansion terms and balance the
importance of the expansion terms using term weighting,
we introduce learning-to-rank methods to construct term-
ranking models for term refinement. In our experiments, we
examine six learning-to-rank methods for our query expan-
sion framework, which adopt one of three approaches: the
pointwise approach, the pairwise approach or the listwise
approach. Different approaches to learning-to-rank adopt
different sampling strategies to train the term-ranking mod-
els. The pointwise methods MART [8] and SVM [6] are
designed to predict the relevance of each term; the pairwise
methods RankNet [9] and RankBoost [11] seek to predict
the preferred order of two terms with different relevance
labels; and the listwise methods ListNet [10] and Lambda-
MART [12] take the term-ranking list as a whole unit to opti-
mize the ranking list.

SVM-based term ranking [6] was first proposed to imple-
ment expansion term refinement to classify terms as good
terms or bad terms and weight the terms based on their pos-
terior probability. By contrast, we adopt learning-to-rank
methods to refine the candidate expansion terms and
weight the terms based on the ranking-based scores. We use
this method as a strong baseline in our experiments.

In this section, we first evaluate the term-ranking accura-
cies of all the methods to examine their effectiveness for term
ranking. Intuitively, the term-ranking models that exhibit the
highest ranking accuracy can choose the most effective terms
for query expansion and improve retrieval performance.
Table 3 shows the term-ranking accuracies obtained from the

rankingmodels constructedwith all the defined term features
on both query sets. We conduct two-tailed paired Student
t-tests (p<0.05) to examinewhether the improvements are sig-
nificant relative to the results of the SVM-based ranking
model, where an asterisk indicates that the improvements are
statistically significant. The results have been averaged over
all folds from cross validations.

The table shows that, on the 2006 queries, the ranking
models based on SVM, MART and RankBoost achieve com-
parable results, outperforming the ranking models based on
RankNet and ListNet, and the LambdaMART-based ranking
model achieves the highest ranking accuracy. Similar trends
can be observed for the 2007 queries, except that the Rank-
Boost-based ranking model achieves the best performance.
Because we define the term features based on corpora and
other resources, we further examine the effectiveness of these
two features sets for constructing the ranking models. Figs. 3
and 4 show the term-ranking accuracies with different fea-
ture sets for each learning-to-rank method on the 2006
queries and the 2007 queries, where “Corpus” refers to the
ranking models trained with only corpus-based features
(defined in Section 3-D-1)), “Resource” refers to the ranking
models trained with only the resource-based features
(defined in Section 3-D-2)), and “All” refers to the ranking
models trainedwith all the defined features.

The figures show similar trends for both query sets. Rank-
ing models based on the resource-based features yield better
results than those based on the corpus-based features for

TABLE 3
Term-Ranking Accuracies with All the Defined

Features on Both Query Sets

Ranking methods For the 2006 queries For the 2007 queries

SVM 0.9358 0.7489
MART 0.9342 0.7852
RankNet 0.8320 0.7119
RankBoost 0.9383� 0.7868�

ListNet 0.7002 0.6539
LambdaMART 0.9462� 0.7721�

‘�’ indicates significant improvements over the SVM-based model.

Fig. 3. Term-ranking accuracies on the 2006 queries.

Fig. 4. Term-ranking accuracies on the 2007 queries.
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different learning-to-rank methods, and ranking models
based on all the features outperform rankingmodels obtained
using either the corpus-based features or the resource-based
features.

To help understand the results of the term ranking, we
provide an example of term ranking based on the query
“What is the role of PrnP in mad cow disease?” (No.160 of
2006 queries). We list the top 10 ranked expansion terms
yielded by the three methods in Table 4, where “Rel.” repre-
sents the relevance label of each term.

The table shows that the LambdaMART-based model can
output more accurate term rankings with definitely relevant
terms at the top of the ranking list compared with the other
two models while reducing the number of irrelevant terms
in the top-ranked list. The phenomenon is consistent with
the results in Table 3, based on which we can choose more
relevant terms in the expanded query to enhance retrieval
performance.

4.4 Comparisons of Retrieval Performance

After examining the term-ranking accuracy of the trained
ranking models, we examine the effectiveness of the term-
ranking model for refining the candidate expansion terms
in the second retrieval. We compare the retrieval perfor-
mance of query expansion using different term-ranking
models in this section relative to the proposed PRF method.
Tables 5 and 6 show the experimental results for both of the
query sets. We conduct two-tailed paired Student t-tests
(p < 0:05) to examine whether the improvements are signif-
icant relative to the baseline models, where an asterisk indi-
cates significant improvements over the proposed PRF
method and a dagger indicates significant improvements
over the SVM-based model.

Table 5 shows that all the experimental results based on
term-ranking models outperform the proposed PRF method,
which demonstrates the usefulness of term ranking in choos-
ing more effective expansion terms. In comparing different
term-ranking models, we find that the RankNet-based and
ListNet-based ranking models achieve relatively lower
improvements than the other term-ranking models, and the
RankBoost-based and LambdaMART-based ranking models
achieve the best retrieval performance, which is analogous to
the results obtained based on term-ranking accuracies. The
term rankings produced by RankNet and ListNet achieve
lower ranking accuracies and, consequently, contribute less to
retrieval performance. Similarly, the term rankings produced
by RankBoost and LambdaMART achieve higher term-
ranking accuracies, and thus, these two models can help
choose more useful expansion terms to improve retrieval per-
formance. Table 6 shows trends similar to those presented in
Table 5; namely, the RankBoost-based and LambdaMART-
based ranking models achieve the best retrieval performance.
Furthermore, we examine the retrieval performance of term-
ranking models based on different feature sets. The experi-
mental results are shown in Figs. 5 and 6.

Fig. 5 shows that the term-ranking models based on the
resource-based features achieve better retrieval perfor-
mance than those based on the corpus-based features, and
the term-ranking models based on all the features achieve
the best performance for most learning-to-rank methods
except for RankNet and ListNet, which is consistent with
the results obtained for the term-ranking accuracies.

Fig. 6 shows differences in the performance of the SVM-
based and RankBoost-based ranking models. For these two

TABLE 4
An Example on Top-10 Ranked Terms of Different Methods

SVM Rel. RankBoost Rel. LambdaMART Rel.

disease 2 disease 2 disease 2
prions 1 prions 1 cow 1
cause 0 mad 1 encephalopathies 2
infectious 2 encephalopathies 2 infectious 2
conversion 0 neurodegenerative 2 spongiform 1
cow 1 cow 1 scrapie 1
spongiform 1 spongiform 1 prpc 1
fatal 0 virus 0 nucleic 1
encephalopathies 2 cause 0 cerebral 1
mad 1 prpc 1 virus 0

TABLE 5
Retrieval Performance with All the Features on the 2006Queries

Methods Document Passage Aspect Passage2

Proposed PRF 0.3242 0.0212 0.2040 0.0260
SVM 0.3435� 0.0249� 0.2527� 0.0306�

MART 0.3434� 0.0247� 0.2505� 0.0308�

RankNet 0.3420� 0.0236� 0.2432� 0.0292�

RankBoost 0.3452�y 0.0251�y 0.2523� 0.0309�y
ListNet 0.3316� 0.0234� 0.2256� 0.0290�

LambdaMART 0.3439� 0.0250�y 0.2540�y 0.0309�y
‘�’ indicates significant improvements over the proposed PRF method, and
‘y’ indicates significant improvements over the SVM-based model.

TABLE 6
Retrieval Performance with All the Features on the 2007Queries

Methods Document Passage Aspect Passage2

Proposed PRF 0.2818 0.0706 0.1996 0.0992
SVM 0.3185� 0.0809� 0.2639� 0.1112�

MART 0.3140� 0.0816�y 0.2589� 0.1111�

RankNet 0.2997� 0.0769� 0.2365� 0.1070�

RankBoost 0.3293�y 0.0832�y 0.2685�y 0.1153�y
ListNet 0.2819� 0.0739� 0.2255� 0.1012�

LambdaMART 0.3273�y 0.0850�y 0.2638� 0.1163�y
‘�’ indicates significant improvements over the proposed PRF method, and
‘y’ indicates significant improvements over the SVM-based model.

Fig. 5. Retrieval performance of different feature sets on the 2006
queries.
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methods, with respect to the 2007 queries, the term-rank-
ing models based on the resource-based features outper-
form those based on all the features. Overall, the term-
ranking models based on learning-to-rank methods with
both the corpus-based features and the resource-based
features can help choose more useful expansion terms
for biomedical information retrieval and further improve
retrieval performance.

4.5 Evaluations with Respect to TermWeighting

Because the experimental results show that term weights
based on the PRF scores are of little use in improving
retrieval performance, in this section, we examine the influ-
ence of term weighting based on learning-to-rank based
scores on retrieval performance in terms of Document
MAP. We report the experimental results in Figs. 7 and 8.

The figures show that weighted expanded queries pro-
duce better results than unweighted ones for term-ranking
models based on all the learning-to-rank methods, which
indicates that the learning-to-rank based scores are more
effective for term weighting in the expanded query. One
reason for this phenomenon may be that PRF-based scores
are designed to choose candidate expansion terms, which
vary greatly among different expansion terms, thus making
the scores an inaccurate indicator of term importance as
term weights in the expanded queries. On the other hand,
ranking-based scores are designed to obtain a ranking list of
all the expansion terms, taking a set of expansion terms as a
whole to compute the final scores, and the scores among dif-
ferent expansion terms are comparable to each other.

Therefore, the ranking-based scores of terms are more suit-
able for use as the term weights to indicate the importance
of different terms in the expanded query.

Therefore, we believe that learning-to-rank methods
have two advantages in our query expansion framework for
term refinement. First, learning-to-rank methods can choose
more relevant expansion terms to construct the expanded
query. Second, the ranking-based scores obtained using the
trained models can be a more accurate indicator of term rel-
evance for term weighting in the expanded queries to fur-
ther improve retrieval performance.

4.6 Comparisons with Respect to Official Runs
in TREC Genomics Tracks

To further evaluate our retrieval performance, we compare
our results with the median results, the mean results and
the best results reported in the 2006 and 2007 tracks of
TREC Genomics [40]. The results of the comparisons are
presented in Table 7.

The table shows that the proposed methods based on
RankBoost and LambdaMART largely improve the mean
result and the median result in the 2006 track in terms of
Document MAP and Aspect MAP and outperform the best
results in the 2007 track in terms of most evaluation meas-
ures. The comparison indicates that our method achieves
better results in the 2007 track. For different evaluation
measures, our method achieves better results in terms of
Document MAP and Aspect MAP but does not perform as
well in terms of Passage MAP or Passage2 MAP. One

Fig. 6. Retrieval performance of different feature sets on the 2007 queries.

Fig. 7. Retrieval performance on term weighting for the 2006 queries.

Fig. 8. Retrieval performance on term weighting for the 2007 queries.

TABLE 7
Comparison with the Best and Mean Results in the

Genomics Tracks

For the 2006 queries Document Passage Aspect Passage2

Median MAP 0.3083 0.0316 0.1581 0.0345
Mean MAP 0.2887 0.0347 0.1643 0.0392
Best MAP 0.5439 0.1012 0.4411 0.1486
RankBoost 0.3452 0.0251 0.2523 0.0309
LambdaMART 0.3439 0.0250 0.2540 0.0309

For the 2007 queries Document Passage Aspect Passage2

Median MAP 0.1897 0.0565 0.1311 0.0377
Mean MAP 0.1862 0.0560 0.1326 0.0398
Best MAP 0.3286 0.0976 0.2631 0.1148
RankBoost 0.3293 0.0832 0.2685 0.1153
LambdaMART 0.3273 0.0850 0.2638 0.1163
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explanation for this finding may be that Passage MAP and
Passage2 MAP compute individual levels of precision based
on character-level precision, which requires extra process-
ing after retrieval by further splitting the retrieved passages
into relevant pieces. Because our method does not seek to
optimize this step, our results indicate lower performance
based on these measures, which can be the subject of future
work on further optimizing our method.

By further comparing the results for the 2006 queries and
the 2007 queries, we find that our models achieve better
results for the 2007 queries, which may be caused by the dif-
ference between these two query sets. Compared with the
2006 track, the 2007 track designated certain types of
required entities to each query [40], such as genes, proteins,
diseases and mutations, which may help better interpret
information needs and benefit the construction of term-
ranking models. Therefore, better results are obtained for
the 2007 queries.

4.7 Parameter Selection and Discussion

In this section, we investigate the sensitivity of the parameters
of pseudo-relevance feedback in our framework to retrieval
performance and provide further analysis and discussions of
the experimental results. There are four parameters in our
query expansion framework: the number of feedback docu-
ments, the number of expansion terms, the weighting ratio on
the original query and the interpolation parameter l in the

proposed PRF method. We tune the parameters for the 2007
queries with the 2006 queries and tune the parameters for the
2006 queries with the 2007 queries. The parameter tuning is
illustrated in Fig. 9, 10, 11, and 12.

The figures show that for the 2006 queries we achieve the
best performance when setting the number of feedback
documents to 60, the number of expansion terms to 30, the
weighting on the original query to 0.8 and � to 0.3. For the
2007 queries, we find that the best performance can be
achieved when setting the number of feedback documents
to 10, the number of expansion terms to 30, the weighting
on the original query to 0.7 and � to 0.6.

The experimental results indicate that term-ranking accu-
racy does correlate with actual retrieval performance for both
datasets. Thus, a higher term-ranking accuracy would con-
tribute more to retrieval performance. A possible explanation
for this finding may be that accurate term ranking can rank
more relevant expansion terms highly on the term-ranking
list, and more relevant expansion terms could contribute to
reformulating a high-quality expanded query, leading to bet-
ter retrieval performance. Moreover, accurate term ranking
produces accurate weights on the chosen expansion terms,
whichwould further improve retrieval performance.

In our query expansion framework, we introduce
learning-to-rank methods for term refinement. Because dif-
ferent learning-to-rank methods employ different machine
learning methods to train the ranking models, the

Fig. 9. Sensitivity of number of feedback documents for 2006 queries
and 2007 queries of TREC Genomics Track Datasets.

Fig. 10. Sensitivity of number of expansion terms for 2006 queries and
2007 queries of TREC Genomics Track Datasets.

Fig. 11. Sensitivity of weight on original query for 2006 queries and 2007
queries of TREC Genomics Track Datasets.

Fig. 12. Sensitivity of parameter � for 2006 queries and 2007 queries of
TREC Genomics Track Datasets.
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experimental results suggest that neural network-based
methods, such as RankNet and ListNet, provide a lower
degree of improvement in retrieval performance although
these methods achieve better performance when training
only with the resource-based features. Boosting- and regres-
sion tree-based methods, such as MART, RankBoost and
LambdaMART, achieve better performance than other
methods. For the features used in the training phase, the
resource-based features can indeed enhance the term-rank-
ing models when considering domain-specific characteris-
tics for better term refinement, and we can enhance retrieval
performance further by using both the resource-based fea-
tures and the corpus-based features.

Overall, we attribute the improvement in biomedical infor-
mation retrieval of the proposed framework to four aspects,
namely, the candidate expansion term extraction, the term-
labeling strategy, the term features and the ranking models.
Our experiments also show that these aspects contribute to
improving retrieval performance. For the candidate expan-
sion term extraction, we combine the MeSH-based informa-
tion with the co-occurrence-based information, which helps
to choose a large set of terms coveringmore relevant terms for
further refinement. For the term-labeling strategy,we propose
integrating the increasing magnitude of the performance into
measuring the relevance of candidate terms, which yields
more accurate labels and contributes tomore effective ranking
models. For the term features, we extract both the corpus-
based features and the resource-based features, which depict
the usefulness of terms more completely from different per-
spectives and complement each other in constructing the
term-ranking models. For the ranking models, we investigate
three approaches to learning to rank in our experiments, and
find that the LambdaMART-based term ranking can achieve
the best performance. These four aspects jointly contribute to
the improvement in retrieval performance, and the proposed
framework can also be further optimized in these respects to
enhance biomedical retrieval performance.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel query expansion framework
based on learning-to-rank methods for biomedical informa-
tion retrieval. In the framework, we propose incorporating
the MeSH thesaurus into the co-occurrence-based term selec-
tionmethod to select the candidate expansion terms. To refine
the expansion terms, we define and extract both the corpus-
based term features and the resource-based term features to
represent the terms as feature vectors, which are taken as the
inputs for learning-to-rankmethods to learn the term-ranking
models. Different approaches to learning-to-rank are investi-
gated in our framework for training the term-rankingmodels.
The proposed framework for biomedical query expansion
based on learning-to-rank not only contributes to choosing
relevant terms for high-quality expanded queries, but also
yields effective term weights to further enhance retrieval per-
formance. Experimental results obtained for TREC Genomics
datasets show that our framework can better refine the expan-
sion terms and improve the performance of biomedical infor-
mation retrieval.

Our future work will be extended in two directions. On
one hand, we will explore other biomedical resources for

extracting powerful term features, which can be of great use
for optimizing expansion term refinement. On the other
hand, because domain-specific concepts are important in
biomedical information retrieval, we will attempt to con-
struct biomedical concept rankingmodels to further improve
our query expansion framework.
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